Modelling Conditional Probability Densities with Neural Networks

نویسندگان

  • Dirk Husmeier
  • John Taylor
  • Bart Krekelberg
  • David Lavis
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density Networks 1 Density Modelling

A density network is a neural network that maps from unobserved inputs to observable outputs. The inputs are treated as latent variables so that, for given network parameters, a non{trivial probability density is deened over the output variables. This probabilistic model can be trained by various Monte Carlo methods. The model can discover a description of the observed data in terms of an under...

متن کامل

Multi-layer perceptrons and probabilistic neural networks for phoneme recognition

Phoneme recognition can be viewed as classifying multivariate observations. Multi-layer perceptrons (MLP) and probabilistic neural networks (PNN) approach the decision problem using two complementary models. The MLP models the discriminant surfaces between different phoneme categories, essentially by piece-wise planar approximations, while the PNN approximates class conditional probability dens...

متن کامل

Probability Estimation by Feed-forward Networks in Continuous Speech Recognition

We review the use of feed-forward networks as estimators of probability densities in hidden Markov modelling. In this paper we are mostly concerned with radial basis functions (RBF) networks. We note the isomorphism of RBF networks to tied mixture density estimators; additionally we note that RBF networks are trained to estimate posteriors rather than the likelihoods estimated by tied mixture d...

متن کامل

Modelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network

Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...

متن کامل

Predicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Tests

In this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty) and three relative densities (%30, %50, and %90) were injecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997